Finished Research Projects

Terrestrial Gravimetry

  • Establishing an Advanced Mexican Gravity Standardization Base
    This joint research project serves for following main scientific objectives: a) supporting the realization of a state of the art national gravity standard in Mexico fulfilling highest accuracy demands in metrology, b) supporting the establishment of a base for a national reference frame for geo-scientific purposes, c) supporting the improvement of a global gravity potential field model for fundamental research in earth science
    Led by: Dr.-Ing. Ludger Timmen
    Team: Dr.-Ing. Ludger Timmen, Dr.-Ing. Manuel Schilling
    Year: 2016
    Funding: Physikalisch-Technische Bundesanstalt Braunschweig
  • Traceability of the FG5X-220 to the SI units
    The Micro-g LaCoste FG5 is a free-fall gravimeter with a laser interferometer in Mach-Zehnder configuration which uses simultaneous time and distance measurements to calculate the absolute value of g. The instrument itself contains the necessary standards, a rubidium oscillator and a He-Ne Laser, and operates independent of external references. These internal standards need regular comparisons.
    Led by: Dr.-Ing. Ludger Timmen
    Team: Dr.-Ing. Ludger Timmen, M. Sc. Manuel Schilling
    Year: 2012
    © IfE / M. Schilling
  • Improved compensation of vibrational noise in the laser interferometer with applications in absolute gravimetry
    Led by: Dr. Sergiy Svitlov
    Year: 2011
    Funding: DFG
    Duration: 2011 - 2018
  • Absolute gravimetry in Denmark
    Led by: Dr.-Ing. Ludger Timmen
    Team: Dipl.-Ing. Olga Gitlein
    Year: 2003

Gravity Field and Geoid Modelling

  • Regional gravity field modeling & relativistic geodesy (CRC 1128, C04)
    Led by: Dr.-Ing. Heiner Denker
    Team: Dr.-Ing. Miao Lin
    Year: 2014
    Funding: Deutsche Forschungsgemeinschaft (DFG)
    Duration: 01.07.2014 – 30.06.2018
  • The recovery of Earth’s global gravity field from GOCE observations
    The ESA’s GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission was the first to jointly apply SGG (satellite gravity gradiometry) and SST-hl (satellite-to-satellite high-low tracking) techniques to map the Earth’s gravity field. It delivered hundreds of millions of observations in four years’ lifetime, from 2009 to 2013. My Ph.D work is to recover a global gravity field model that is described by 62,997 spherical harmonic coefficients (up to degree/order 250) from the huge amount of GOCE observations.
    Led by: Prof. Dr.-Ing. Jürgen Müller
    Team: Dr.-Ing. Hu Wu
    Year: 2011
    Funding: Stipendium
    Duration: 2011-2016
  • GOCE-GRavitationsfeldANalyse Deutschland – GOCE-GRAND II WP220 – Regionales Validierungs- und Kombinationsexperiment
    Within the framework of the project, high-quality validated terrestrial gravity field data sets (in particular deflections of the vertical and gravity data) were generated in Germany and Europe for the external validation of GOCE products. These data were used for the validation of existing satellite gravity models on the one hand and for the calculation of corresponding combined quasigeoid solutions for Germany and Europe on the other hand.
    Led by: Dr.-Ing. Heiner Denker (WP220 - IfE)
    Team: Dr.-Ing. Christian Voigt
    Year: 2005
    Funding: Research and development programme GEOTECHNOLOGIEN, funded by the Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG), Förderkennz. 03F0421D
    Duration: 01.09.2005 – 31.08.2008

Relativistic Geodesy

Satellite Gravimetry

GNSS and Inertial Navigation

Lunar Laser Ranging (LLR)

Space Sensor Technologies

  • Disentangling gravitational signals and errors in global gravity field parameter estimation from satellite observations (SFB 1128, C01)
    Range-rate residuals from the estimation of global gravity field parameters from GRACE satellite-to-satellite tracking reveal a range of systematic effects that limit the accuracy of the estimated parameters. The project investigated the characteristics of time series of range-rate residuals. It addressed how drops in the K-band ranging signal-to-noise ratio at specific inter-satellite Doppler frequencies propagate to anomalies in range-rate residuals, as well as anomalies during penumbra transitions. A part of the project at TU Graz, in the group of Prof. Mayer-Gürr, studied options to use wavelet parameters in the SST gravity field parameter estimation.
    Led by: Prof. Jakob Flury
    Team: M.Sc. Saniya Behzadpour
    Year: 2014
    Funding: DFG
    Duration: 2014-2018
  • Highly physical penumbra solar radiation pressure modeling with atmospheric effects
    During penumbra transitions of an Earth orbiter, the solar radiation hitting the satellite is strongly influenced by refraction and absorption of light rays grazing the Earth’s atmosphere. The project implemented solar radiation pressure modeling including these effects. Model results were tested by comparing with measurements of the accelerometers of the GRACE low Earth orbiters.
    Led by: Prof. Jakob Flury, Tamara Bandikova
    Team: Robbie Robertson (Virginia Tech, Blacksburg, VA)
    Year: 2010
    Funding: RISE/QUEST
    Duration: 2010
  • In-Orbit System Analysis of the Gravity Recovery and Climate Experiment (GRACE) Mission
    Precise determination and control of satellite attitude plays a key role for satellite geodesy in general, and for Satellite-to-Satellite Tracking in particular. The project provided the first in-depth characterization of GRACE pointing biases and pointing variations. Investigations addressed star camera inter-boresight angle variations, the weighted camera sensor head combination, as well as error propagation to inter-satellite ranging and accelerometer observations. Results led to significant improvements in the operational GRACE data processing.
    Led by: Prof. Jakob Flury
    Team: Tamara Bandikova
    Year: 2009
    Funding: Exzellenzcluster QUEST
    Duration: 2009-2015
    © IfE / Bandikova

CRC 1128 (geo-Q)

QUEST

  • Satellite Navigation using high precise Oscillators
    Examination of high precise Oscillators in the application area of Satellite Navigation
    Led by: Prof. Dr.-Ing. Steffen Schön
    Team: Dipl.-Ing. Ulrich Weinbach
    Year: 2011
    Funding: QUEST
  • Potential Field Determination and high precise Oscillators
    Determination of the Earth's Gravity Field using high precise Oscillators
    Led by: Prof. Dr.-Ing. habil. Jürgen Müller
    Team: Dr.-Ing. habil. Enrico Mai
    Year: 2011
    Funding: QUEST (Quantum Engineering and Space Time Research)
  • Highly physical penumbra solar radiation pressure modeling with atmospheric effects
    During penumbra transitions of an Earth orbiter, the solar radiation hitting the satellite is strongly influenced by refraction and absorption of light rays grazing the Earth’s atmosphere. The project implemented solar radiation pressure modeling including these effects. Model results were tested by comparing with measurements of the accelerometers of the GRACE low Earth orbiters.
    Led by: Prof. Jakob Flury, Tamara Bandikova
    Team: Robbie Robertson (Virginia Tech, Blacksburg, VA)
    Year: 2010
    Funding: RISE/QUEST
    Duration: 2010
  • In-Orbit System Analysis of the Gravity Recovery and Climate Experiment (GRACE) Mission
    Precise determination and control of satellite attitude plays a key role for satellite geodesy in general, and for Satellite-to-Satellite Tracking in particular. The project provided the first in-depth characterization of GRACE pointing biases and pointing variations. Investigations addressed star camera inter-boresight angle variations, the weighted camera sensor head combination, as well as error propagation to inter-satellite ranging and accelerometer observations. Results led to significant improvements in the operational GRACE data processing.
    Led by: Prof. Jakob Flury
    Team: Tamara Bandikova
    Year: 2009
    Funding: Exzellenzcluster QUEST
    Duration: 2009-2015
    © IfE / Bandikova