Relativistic Geodesy
-
Chronometrisches NivellementLed by: Dr.-Ing. Heiner DenkerTeam:Year: 2019Funding: verschiedene Landes- und Drittmittel sowie separate ProjekteDuration: seit 2010
Terrestrial Gravimetry
-
Optical Clocks for Chronometric Levelling (CRC 1464, A04)We will realise the potential of chronometric levelling by demonstrating off-campus height measurements with the same or better resolution than geometric levelling and the Global Navigation Satellite System (GNSS)/geoid approach can presently achieve, in joint campaigns with project A05. This demonstration will be strengthened by the application of our measurement capabilities to geodetic problems of high relevance through cooperation with the TerraQ projects employing gravimetric and GNSS techniques to e.g. monitor water storage and other mass changes (projects Terrestrial Clock Networks: Fundamental Physics and Applications (C02), Modelling of Mass Variations Down to Small Scales by Quantum Sensor Fusion (C05), and Atmosphere-Ocean Background Modelling for Terrestrial Gravimetry (C06)).Led by: PD Dr. Christian Lisdat, Prof. Dr. Piet O. Schmidt, Dr.-Ing. DenkerTeam:Year: 2021Funding: DFG
-
Validation of Quantum Gravimeter QG-1 for Hydrology (CRC 1464, C01)For the groundwater management in central Europe, ground-based gravimetry provides a unique potential to monitor temporal variations in the subsurface water content for local areas. The atomic Quantum Gravimeter-1 (QG-1) of Leibniz Universität Hannover (LUH) is in its final phase of development (A01) and will be ready for geodetic and gravimetric applications latest in 2021. The QG-1 capability will be demonstrated indoor and also in a field application as an advanced absolute gravimeter allowing effectively the surveying of gravity variations due to groundwater changes on the uncertainty level of 10 nm/s².Led by: Dr.-Ing. Heiner Denker, Dr.-Ing. Ludger TimmenTeam:Year: 2021Funding: DFG