Publikationen

Zeige Ergebnisse 41 - 60 von 156

2020


Herr, W., Heine, N., Matthias, J., Abend, S., Timmen, L., Müller, J., & Rasel, E. M. (2020). A transportable absolute Quantum Gravimeter employing collimated Bose-Einstein condensates. Beitrag in EGU General Assembly 2020, online. https://doi.org/10.5194/egusphere-egu2020-21986
Lin, M., Denker, H., & Müller, J. (2020). Gravity Field Modeling Using Tesseroids with Variable Density in the Vertical Direction. Surveys in geophysics, 41(4), 723-765. https://doi.org/10.1007/s10712-020-09585-6, https://doi.org/10.1007/s10712-021-09654-4
Müller, J., & Wu, H. (2020). Using quantum optical sensors for determining the Earth’s gravity field from space. Journal of geodesy, 94(8), Artikel 71. https://doi.org/10.1007/s00190-020-01401-8, https://doi.org/10.15488/10716
Philipp, D., Laemmerzahl, C., Hackmann, E., Perlick, V., Puetzfeld, D., & Müller, J. (2020). Fundamental Notions in Relativistic Geodesy - physics of a timelike Killing vector field. Beitrag in EGU General Assembly 2020, online. https://doi.org/10.5194/egusphere-egu2020-16528
Philipp, D., Hackmann, E., Lämmerzahl, C., & Müller, J. (2020). Relativistic geoid: Gravity potential and relativistic effects. Physical Review D, 101(6), Artikel 064032. https://doi.org/10.1103/PhysRevD.101.064032
Schilling, M., Wodey, É., Timmen, L., Tell, D., Zipfel, K. H., Schlippert, D., Schubert, C., Rasel, E. M., & Müller, J. (2020). Gravity field modelling for the Hannover 10 m atom interferometer. Journal of Geodesy, 94(12), Artikel 122. https://doi.org/10.1007/s00190-020-01451-y, https://doi.org/10.15488/10717
Viswanathan, V., Mazarico, E., Merkowitz, S., Williams, J. G., Turyshev, S. G., Currie, D. G., Ermakov, A. I., Rambaux, N., Fienga, A., Courde, C., Chabé, J., Torre, J.-M., Bourgoin, A., Schreiber, U., Eubanks, T. M., Wu, C., Dequal, D., Dell'Agnello, S., Biskupek, L., ... Kopeikin, S. (2020). Extending Science from Lunar Laser Ranging. Bulletin of the AAS, 53(4). https://doi.org/10.3847/25c2cfeb.3dc2e5e4
Wu, H., & Müller, J. (2020). Towards an International Height Reference Frame Using Clock Networks. 3-10. https://doi.org/10.1007/1345_2020_97, https://doi.org/10.15488/14073
Zhang, M., Müller, J., & Biskupek, L. (2020). Test of the equivalence principle for galaxy’s dark matter by lunar laser ranging. Celestial Mechanics and Dynamical Astronomy, 132(4), Artikel 25. https://doi.org/10.1007/s10569-020-09964-6

2019


Abend, S., Gersemann, M., Ahlers, H., Sahelgozin, M., Matthias, J., Grove, N., Heine, H., Gaaloul, N., Herr, W., Schubert, C., Ertmer, W., Rasel, E. M., Gebbe, M., Müntinga, H., Lämmerzahl, C., Timmen, L., & Müller, J. (2019). Atom-chip–based quantum gravimetry with BECs. In W. P. Schleich, E. M. Rasel, & S. Wolk (Hrsg.), Foundations of Quantum Theory (S. 393-397). (Proceedings of the International School of Physics "Enrico Fermi"; Band 197). IOS Press. https://doi.org/10.3254/978-1-61499-937-9-393
Lin, M., Denker, H., & Müller, J. (2019). A comparison of fixed- and free-positioned point mass methods for regional gravity field modeling. Journal of geodynamics, 125, 32-47. https://doi.org/10.1016/j.jog.2019.01.001
Mai, E., Müller, J., & Oberst, J. (2019). Application of an evolution strategy in planetary ephemeris modeling. Advances in space research, 63(1), 728-749. https://doi.org/10.1016/j.asr.2018.09.011
Müller, J., Murphy, T. W., Schreiber, U., Shelus, P. J., Torre, J. M., Williams, J. G., Boggs, D. H., Bouquillon, S., Bourgoin, A., & Hofmann, F. (2019). Lunar Laser Ranging: A tool for general relativity, lunar geophysics and Earth science. Journal of geodesy, 93(11), 2195-2210. https://doi.org/10.1007/s00190-019-01296-0
Müller, J., Hofmann, F., & Biskupek, L. (2019). Warum man den Abstand zum Mond misst. In Jahrbuch 2018 der Braunschweigischen Wissenschaftlichen Gesellschaft (Band 2018, S. 17-28). (Jahrbuch der Braunschweigischen Wissenschaftlichen Gesellschaft; Band 2018). Cramer. https://doi.org/10.24355/dbbs.084-201905071310-0
Pail, R., Bamber, J., Biancale, R., Bingham, R., Braitenberg, C., Eicker, A., Flechtner, F., Gruber, T., Güntner, A., Heinzel, G., Horwath, M., Longuevergne, L., Müller, J., Panet, I., Savenije, H., Seneviratne, S., Sneeuw, N., Van Dam, T., & Wouters, B. (2019). Mass variation observing system by high low inter-satellite links (MOBILE) - A new concept for sustained observation of mass transport from space. Journal of Geodetic Science, 9(1), 48-58. https://doi.org/10.1515/jogs-2019-0006, https://doi.org/10.15488/11230
Trimeche, A., Battelier, B., Becker, D., Bertoldi, A., Bouyer, P., Braxmaier, C., Charron, E., Corgier, R., Cornelius, M., Douch, K., Gaaloul, N., Herrmann, S., Müller, J., Rasel, E., Schubert, C., Wu, H., & Pereira Dos Santos, F. (2019). Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Classical and quantum gravity, 36(21), Artikel 215004. https://doi.org/10.48550/arXiv.1903.09828, https://doi.org/10.1088/1361-6382/ab4548

2018


Hofmann, F., Biskupek, L., & Müller, J. (2018). Contributions to reference systems from Lunar Laser Ranging using the IfE analysis model. Journal of geodesy, 92(9), 975-987. https://doi.org/10.1007/s00190-018-1109-3
Hofmann, F., & Müller, J. (2018). Relativistic tests with lunar laser ranging. Classical and Quantum Gravity, 35(3), Artikel 035015. https://doi.org/10.1088/1361-6382/aa8f7a
Leßmann, L., & Müller, J. (2018). Analysis of non-tidal ocean loading for gravitational potential observations in northern Europe. Journal of geodynamics, 119, 23-28. https://doi.org/10.1016/j.jog.2018.05.008
Lisdat, C., Müller, J., & Schmidt, P. O. (2018). Optische Uhren und ihre Anwendung in der Geodäsie. PTB - Mitteilungen Forschen und Prufen, 128(3), 17-25.