A transportable quantum gravimeter employing delta-kick collimated Bose–Einstein condensates

verfasst von
Nina Heine, Jonas Matthias, Maral Sahelgozin, Waldemar Herr, Sven Abend, Ludger Timmen, Jürgen Müller, Ernst Maria Rasel
Abstract

Abstract: Gravimetry with low uncertainty and long-term stability opens up new fields of research in geodesy, especially in hydrology and volcanology. The main limitations in the accuracy of current generation cold atom gravimeters stem from the expansion rate and the residual centre-of-mass motion of their atomic test masses. Our transportable quantum gravimeter QG-1 aims at overcoming these limitations by performing atom interferometry with delta-kick collimated Bose–Einstein condensates generated by an atom chip. With our approach we anticipate to measure the local gravitational acceleration at geodetic campaigns with an uncertainty less than 1 nm/s2 surpassing the state-of-the-art classic and quantum based systems. In this paper, we discuss the design and performance assessment of QG-1. Graphical abstract: [Figure not available: see fulltext.]

Organisationseinheit(en)
Institut für Quantenoptik
Institut für Erdmessung
QuantumFrontiers
SFB 1464: Relativistische und quanten-basierte Geodäsie (TerraQ)
Typ
Artikel
Journal
European Physical Journal D
Band
74
ISSN
1434-6060
Publikationsdatum
25.08.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
https://doi.org/10.1140/epjd/e2020-10120-x (Zugang: Offen)
https://doi.org/10.15488/10683 (Zugang: Offen)
 

Details im Forschungsportal „Research@Leibniz University“