Geodesy and relativity

verfasst von
Jürgen Müller, Michael Soffel, Sergei A. Klioner
Abstract

Relativity, or gravitational physics, has widely entered geodetic modelling and parameter determination. This concerns, first of all, the fundamental reference systems used. The Barycentric Celestial Reference System (BCRS) has to be distinguished carefully from the Geocentric Celestial Reference System (GCRS), which is the basic theoretical system for geodetic modelling with a direct link to the International Terrestrial Reference System (ITRS), simply given by a rotation matrix. The relation to the International Celestial Reference System (ICRS) is discussed, as well as various properties and relevance of these systems. Then the representation of the gravitational field is discussed when relativity comes into play. Presently, the so-called post-Newtonian approximation to GRT (general relativity theory) including relativistic effects to lowest order is sufficient for practically all geodetic applications. At the present level of accuracy, space-geodetic techniques like VLBI (Very Long Baseline Interferometry), GPS (Global Positioning System) and SLR/LLR (Satellite/Lunar Laser Ranging) have to be modelled and analysed in the context of a post-Newtonian formalism. In fact, all reference and time frames involved, satellite and planetary orbits, signal propagation and the various observables (frequencies, pulse travel times, phase and travel-time differences) are treated within relativity. This paper reviews to what extent the space-geodetic techniques are affected by such a relativistic treatment and where-vice versa-relativistic parameters can be determined by the analysis of geodetic measurements. At the end, we give a brief outlook on how new or improved measurement techniques (e.g., optical clocks, Galileo) may further push relativistic parameter determination and allow for refined geodetic measurements.

Organisationseinheit(en)
Institut für Erdmessung
Externe Organisation(en)
Technische Universität Dresden
Typ
Übersichtsarbeit
Journal
Journal of geodesy
Band
82
Seiten
133-145
Anzahl der Seiten
13
ISSN
0949-7714
Publikationsdatum
06.06.2008
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Geophysik, Geochemie und Petrologie, Computer in den Geowissenschaften
Elektronische Version(en)
https://doi.org/10.1007/s00190-007-0168-7 (Zugang: Unbekannt)
 

Details im Forschungsportal „Research@Leibniz University“