Highly physical penumbra solar radiation pressure modeling with atmospheric effects

verfasst von
Robert Robertson, Jakob Flury, Tamara Bandikova, Manuel Schilling
Abstract

We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth’s penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the (Formula presented.) precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

Organisationseinheit(en)
Institut für Erdmessung
Externe Organisation(en)
Virginia Polytechnic Institute and State University (Virginia Tech)
Typ
Artikel
Journal
Celestial Mechanics and Dynamical Astronomy
Band
123
Seiten
169-202
Anzahl der Seiten
34
ISSN
0923-2958
Publikationsdatum
26.10.2015
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Modellierung und Simulation, Mathematische Physik, Astronomie und Astrophysik, Astronomie und Planetologie, Computational Mathematics, Angewandte Mathematik
Ziele für nachhaltige Entwicklung
SDG 13 – Klimaschutzmaßnahmen
Elektronische Version(en)
https://doi.org/10.1007/s10569-015-9637-0 (Zugang: Geschlossen)
 

Details im Forschungsportal „Research@Leibniz University“